Powerful future support by Robots when emptying containers

01-26-2018

40-foot standard containers are the most frequently used sea containers worldwide. With internal dimensions of roughly 12 by 2.3 by 2.4 meters, they have a loading volume of 65 cubic meters and a cargo load of up to some 26 tons. Unloading these containers is heavy work, still mainly carried out manually in the world's ports. Now there are plans for an innovative robot to take over this job. The research is being carried out by BIBA – the Bremen Institute for Production and Logistics at Bremen University, in cooperation with development partners BLG Handelslogistik and SCHULZ Systemtechnik in Bremen plus FRAMOS in Taufkirchen near Munich. The new project is named “Interactive Robot System for Unloading Sea Containers” (IRiS).

The German Federal Ministry for Transport and Digital Infrastructure (BMVI) is supporting this three-year project as part of the Program for Innovative Port Technologies (IHATEC) with a sum of EUR 2.2 million. The total budget is EUR 3.16 million. Technical support comes from test institute TÜV Rheinland, and the joint project coordinator is BLG Handelslogistik.

Up to 1,800 cartons with individual weights of up to 35 kilograms in every 40-foot container

A significant portion of imported and exported containers are loaded and unloaded in seaports. In today's highly automated transport chain, unloading is one of the last manual processes. The reason is a lack of lean, easy, reliable, and cheap technical solutions.

Due to high investment costs and commissioning times as well as the complex adaptations needed, only a few port operators use the automated and semi-automated robot systems currently available. Furthermore, these solutions are often stationary and relatively large, which considerably limits their flexibility. That means this monotonous, physically very demanding work in usually exposed surroundings is still overwhelmingly done by manpower. Unloading a 40-foot standard container involves moving up to 1,800 cartons, each weighing 35 kilograms or even more.

Mobile system easy and fast to integrate into existing infrastructures

The project is dedicated to improving working conditions and efficiency in goods handling processes in seaports. The mobile robot under development here is intended for use in existing port infrastructure without significant alterations. It will move under its own power between several gates and be able to drive into containers as they empty. It will also feature an innovative kinematic and gripping system. Established machine learning methods will enable the robot to classify and optimally handle various packing scenarios.

Human-machine interface for smooth collaboration

The first step needed is assessing the technological and employee-specific requirements. To make collaboration with the machine as simple as possible, BIBA is developing human-machine interfaces. They will be integrated in a test control station. Once all the individual components are incorporated in an overall system, laboratory and field tests will examine the results.

Various interaction modules will enable intuitive control of one or more robots. "That's how employees can monitor the robots. Then, if there are any problems, they can intervene quickly and easily. Above all, they don't need any programming skills. They don't have to stand near the robot, but work remotely from a control station. That minimizes the risk of expensive system standstills," says Dr.-Ing. Hendrik Thamer, the Project Manager at BIBA.

BIBA is responsible in the project not only for the kinematics and gripper system, but also for designing the workstation to integrate the operating personnel. It is developing interaction modules based on intuitive, user-specific concepts as well as devising the monitoring system for checking correct robot functioning and performance.

Parallel to mechatronics development: simulation and virtual testing on a digital twin

"We're using a digital twin to map the robot planning, design, component manufacturing, and commissioning. That's how we simulate and virtually test for instance the components in advance," explains Dipl.-Ing. Marco Schrader, an automation and robotics expert at Schulz Systemtechnik. The company is responsible for developing and operating the digital twin. This saves resources in research and development work. Another challenge is analyzing the container contents.

Scenario analysis with AI and state-of-the-art image processing

The project partner FRAMOS specializes in industrial image processing. The company is developing state-of-the-art methods for reliable classification of packing scenarios and analysis of container contents. "The object recognition is based on 2D and 3D image data. It uses the latest image processing methods combined with machine learning," explains Dr. Simon Che’Rose, Head of Development at FRAMOS. That will enable the system, among other things, to recognize whether a container can be discharged fully automatically by the robot, or whether special conditions mean the robot has to be manually controlled from the control station. It will also analyze the positions and orientation of the contents and plan the optimal unloading process.

Joint project leader BLG: "First results scheduled for 2019"

"As early as in 2019, the prototype will demonstrate what reliable human-machine collaboration in the supply chain can look like," says Wolf Lampe, Head of Sustainability and New Technologies at BLG Logistics. "The project partnership composition and the mature concept give us every reason to be optimistic."

Powerful future support by Robots when emptying containers. Until now, this monotonous and physically stressful activity has been carried out by people.
ZIP, 2 MB Collect